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An inventive scheme for automated tissue segmentation and classification is offered in this paper using Fast
Discrete Wavelet Transform (DWT)/Band Expansion Process (BEP), Kernel-based least squares Support Vector
Machine (KLS-SVM) and F-score, backed by Principal Component Analysis (PCA). Using input as T1, T2 and
Proton Density (PD) scans of patients, CSF (Cerebrospinal Fluid), WM (White matter) and GM (Gray matter) are
afforded as output, which act as hallmark for brain atrophy and thus sustaining in diagnosis of Alzheimer's
disease (AD) from Mild Cognitive Impairment (MCI) and Healthy Controls (HC). The blending of BEP features
from DWT and texture features from Gray Level Co-occurrence Matrix (GLC) promises to be a savior in atrophy
revelation of the segmented tissues. Data used for evaluation of this study is taken from the ADNI database that
encloses T1-weighted s-MRI (Structural Magnetic Imaging Resonance) scans of 158 patients with AD and 145
HC. Preprocessing steps unearthed five parameters for classification (i.e. cortical thickness, curvature, gray
matter volume, surface area, and sulcal depth), in the preliminary step. For challenging the classifier perfor-
mance, ROC (Receiver operating characteristics) curves are painted and the SVM classifiers of two-dimensional
spaces took the top two important features as classification features for separating HC and AD to the maximum
extent. The final results revealed that Fast DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100%

tissue classification accuracy for test samples under consideration with only 7 input features.

1. Introduction

Alois Alzheimer, a German neuropathologist, first labeled
Alzheimer's disease (AD) as Dementia Praecox in 1907. Now, the pre-
sent day research witnesses a growing trend in neurologic diseases like
Epilepsy, Parkinson's disease (PD), Multiple Sclerosis (MS), Stroke, AD,
Myasthenia gravis, etc. More than 600 neurologic diseases have been
documented in the medical literature [1]. Dementia is one common
disease in the list hurting cognitive abilities like memory and other
grave issues enough to thwart regular life. Parkinson's disease de-
mentia, Mixed dementia, Vascular dementia, Dementia with Lewy
bodies, Frontotemporal dementia (FTD), Korsakoff syndrome, Hun-
tington's disease dementia, Creutzfeldt-Jakob disease, Normal pressure
hydrocephalus, Down syndrome dementia, Posterior cortical atrophy
(PCA), etc. are its compound forms [1]. The literature confronts that 44
million people suffer from dementia globally, anticipated to double by
2030 and more than triple by 2050, i.e. 115 million people. 60% de-
mented are affected by Alzheimer's disease and further 1 in 85 people
will be its prey by 2050 [1]. 66% of the demented are partaking AD and
only 10% of them are diagnosed at the right time and residual 90% will
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not be diagnosed at all, according to the survey through research group
of Alzheimer's Association [2]. America alone is home to 5 million
Alzheimer patients, comprising 11% of those with age 65 and older and
one-third of those 85 and older. The disease also impacts more than 15
million family members, friends, and caregivers.

Healthcare sector is at the peak of revolution with new innovations
particularly in the design of non-invasive machines/techniques which
can draw clear HD (High Definition) painting of interiors of the whole
body on the wall. These are predominantly used in brain tumors,
strokes, blood clots, or other abnormalities that might account for
Multiple Sclerosis (MS) or Alzheimer's. Enhanced with high-resolution
imaging and high brain tissue contrast capabilities, Structural Magnetic
Resonance Imaging (s-MRI) is one of the vital neuroimaging modalities.
Truly, MRI scans are architected by pulse sequences and itemized by
three varied MR tissue parameters: spin-lattice (T1), spin-spin (T2)
relaxation times, and Proton Density (PD) [3]. In a magnetic field, in-
gredients of brain such as Gray Matter (GM), Cerebrospinal Fluid (CSF),
White Matter (WM), Glial Matter, Fat, Muscle/Skin, etc., display idio-
syncratic characteristics making extraction of both spatial and tissue
characteristics possible from these MRI scans [4]. CSF, GM, and WM,
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distributed in T1, T2, and PD are key tissue types of brain. Making it
non-reproducible and essentially tough task for manual classification of
these colossal data amounts of tissues, ascends the need for develop-
ment of fully automatic and accurate brain tissue classification from
MRI images, in case of various disease symptoms like Tumors, MS, AD
and other White Matter Lesions (WML) which is at the heart of present-
day research [5,6].

1.1. Need for automation

Dealing with such a heavy burden on the society both economically
and health-wise, early and precise diagnosis of Alzheimer's disease is
the need of the hour. The current refined non-invasive tests used in the
studies of Alzheimer's disease (AD) and mild cognitive impairment
(MCI) have sightseen varied neuroimaging modalities with promising
results. These include structural MRI (s-MRI), functional MRI (fMRI)
[71, Flourodeoxy glucose Positron Emission Tomography (FDG-PET)
and amyloid PETs such as Pittsburgh compound (PiB-PET) [8]. Existing
neuropsychological testing techniques for AD diagnosis like Mini-
Mental State Examination (MMSE), Montreal Cognitive Assessment
(MoCA), BDIMC, COG SCORE, BOMC, MOCA, AD8, GP COG, and 10/66
research group practice a sequence of cognitive tests comprehending a
set of questions and images [8]. Being time-consuming for visualizing/
interpreting multimodal data of patients, the precise outcome is directly
proportionate to the expertise of clinician/doctor here. Manual seg-
mentation is not lesser than a nightmare keeping in view the perfections
accomplished by imaging tools (e.g., MR scanners resolve images at
millimetric resolution) over the past years. To excerpt the contours of
the target structures, a trained operator has to endure around eighty
512 x 512 images, slice by slice. Similarly exploring s-MRI with VBM
(Voxel-Based Morphometry), 106 brain dimensions are created [9].
Various studies have assessed manual segmentation as not only tedious
but also liable to errors [10,11].

All the features generated are not always worthy of the task at hand.
Many multivariate approaches show accuracy drop if redundant in-
formation exists in features for disease prediction. To pronounce the
dataset at least as well as the original set of features, Feature Selection
(FS), an energetic research area in machine learning (ML) communities,
aims to find a small number of relevant features according to given
criterion, maintaining their original values. It is not always the case that
more information would lead to higher accuracy. For differentiating
both groups, a single feature is not on the road to afford information in
many situations. On the other hand, multivariate analyzes contemplate
sets of features from small individual contributions, whose integration
lead to the identification of different patterns from each group. Thus,
not all brain structures are crucial to set apart abnormal patients from
healthy controls. These all driving factors created a thrust to develop an
automated solution for analysis and interpretation of such multi-fea-
tured and multi-modal data. Machine learning has come as a Messiah
for relieving this burden, by producing offshoots commonly known to
us as Computer-aided/assisted diagnosis (CAD) systems. These systems
can handle multi-featured, complex and heterogeneous data at a very
fast pace and beat the human brain when it comes to interpreting
images. Lot of pioneering work in this direction has already geared up.

Morphological changes in the brain can be measured using manual,
semi-automated and fully automated volumetric techniques to study
the whole brain and medial temporal volumes. In recent years, major
advances in neuroimaging have provided opportunities to study neu-
rological-related diseases, resulting in improvements in early and ac-
curate detection of AD [12-15]. The functional network techniques are
used by various researchers in the literature for the automated diag-
nosis of Alzheimer's disease. Xiaohong Cui et al. [16] proposed a
minimum spanning tree (MST) classification framework to identify
Alzheimer's disease (AD), MCI, and normal controls (NCs). The pro-
posed method mainly uses the MST method, graph-based Substructure
Pattern mining (g-Span), and graph kernel Principal Component
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Analysis (graph kernel PCA). Specifically, MST is used to construct the
brain functional connectivity network g-Span, to extract features and
subnetwork selection and graph kernel PCA, to select features. Finally,
the support vector machine is used to perform classification. The
method was evaluated on MST brain functional networks of 21 AD, 25
MCI, and 22 NC subjects. The experimental results show that the pro-
posed method achieves classification accuracy of 98.3, 91.3, and
77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. Similar
latest graph connectivity work for Alzheimer's disease diagnosis has
been done [17-23].

The remainder of the paper is organized as follows: First, in Section
2, data sets, both benchmark and local, used in the study are ignited.
Initial preprocessing techniques with proper feature vector extraction
from input raw MRI brain images are also part of this domain. The
novelty of the work is at the heart of the proposed methodology in
Section 3 with a torchlight also thrown on the evaluating parameters
used in this paper. The final results in the form of tables, graphs, ROC/
AUC curves are drawn in Section 4. The clinical importance of the
obtained results is thoroughly discussed here with a comparison of our
techniques with existing ones in terms of its improvements. Finally, the
output results are concluded in Section 5 and some promising future
directions are also highlighted.

2. Methods

Both datasets, benchmark and local, used in the study are the topics
of description in this section. Initial preprocessing techniques with
proper feature vector extraction from input raw MRI brain images with
a flavor of the used machine learning classifier are also part of this
domain.

2.1. Data

The data in this research is taken from the Alzheimer's disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [24]. To
quantify the headway of mild cognitive impairment (MCI) and early
Alzheimer's disease (AD), using MRI, PET, other biological markers,
whether and how clinical and neuropsychological assessments could be
combined, is the focal goal of ADNI. The data entailed high-resolution
T1-weighted s-MRI of 303 participants. T1-weighted structural image
parameters of all participants were roughly labeled as TR = 2400 ms,
TE = 4 ms, slice thickness = 1.0 mm, voxel size
1.0mm X 1.0mm X 1.0 mm. Cognitive and behavioral assessments of
all participants are done before scanning. While relating age and
gender, no significant difference (p > 0.05) between the HC group and
AD group is found. Certain differences between groups for demo-
graphics including mini-mental state examination (MMSE), clinical
dementia rating (CDR) existed, such as AD had a lower score of MMSE
but a higher score of CDR than HC. SPSS 22.0 initially is used for sta-
tistical analysis of basic information.

The data is represented as a mean * standard deviation. p-Values
are displayed on right columns for two sample t-tests for each sample
characteristic except for gender, which displays p-value from a ? test.
The second local dataset for this work was attained from 2 known
medical imaging centers of Srinagar, India namely Medicare Diagnostic
Center and DM diagnostic clinic over the last 2 years [25]. Images from
three sections, i.e., axial, coronal and sagittal compose every study of
the dataset. The number of images varies across three sections de-
pending upon the parameter selection of axial resolution and slice
thickness. The results are obtained here in two experiments, viz., seg-
mentation of brain tissues and the estimation of brain volume atrophy
(Table 1).

+

2.2. Neuroimaging processing

Initial processing of MRI images mined two types of information, i.e.
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Table 1

Mean and standard deviation of sample demographics of ADNI dataset.
Characteristic AD HC p-Value
Sample size 158 145
Gender (male/female) 86/72 71/74 0.342
Age (years) 75.21 + 7.47 75.76 + 4.42 0.432
CDR 4.68 = 1.74 0.04 = 0.14 < 0.000001
MMSE 23.30 = 2.05 29.14 = 0.94 < 0.000001

volumetric features and cortical thickness features. This initial pre-
processing was carried with the Freesurfer image analysis suite, which
is documented and open source brain suite software (http://surfer.nmr.
mgh.harvard.edu). Averaging [26] of multiple volumetric T1 weighted
images (when more than one is available), removal of non-brain tissue
using a hybrid watershed/surface deformation procedure [27], motion
correction, automated Talairach transformation, segmentation of the
subcortical white matter and deep gray matter volumetric structures
(including hippocampus, amygdala, caudate, putamen, ventricles) [28],
Image Registration, Longitudinal Processing, intensity normalization,
Skull stripping, Subcortical Segmentation, Cortical Thickness Estima-
tion, Cortical Surface Reconstruction, Cortical Segmentation, fMRI
Analysis, Tractography, FreeView Visualization GUI, tessellation of the
gray matter-white matter boundary, automated topology correction and
surface deformation are some of the services offered by this tool. Sur-
face inflation, registration to a spherical atlas which utilizes individual
cortical folding patterns to match cortical geometry across subjects
[29], fragmentation of the cerebral cortex into units based on gyral and
sulcal structure and creation of a variety of surface based data including
maps of curvature and sulcal depth [29] are the succeeding deformable
procedures after initial cortical processing.

Cortical thickness (CT) and gray matter probability (GMP) are dug
out in the s-MRI case. Segmentation and deformation trials from all-
inclusive three dimensional MR volume produce representations of
Cortical thickness, calculated as the closest distance from the gray/
white boundary to the gray/CSF (Cerebrospinal Fluid) boundary at
each vertex on the tessellated surface. Using spatial intensity gradients
across the tissue, maps are fashioned which are not constrained to the
voxel resolution of the original data, and thus are capable of detecting
submillimeter differences between groups. The cortical thickness fea-
tures are average values for each region. A measure of roughness for
each cortical region, the standard deviation of the cortical thickness
was also calculated additionally. Also, anatomical localization of the
cerebral areas of reformed white and gray matter was performed.
Individual Brain Atlases using Statistical Parametric Mapping (IBASPM)
are used for Volumetric analysis of brain MRIs utilized, which is an
extension of SPM-5. The calculation of the brain structure was per-
formed as follows: 1) MRIs were segmented into gray matter, white
matter and cerebral spinal fluid (CSF), using IBASPM segmentation. 2)
MRI scans were spatially transformed into Montreal Neurological
Institute (MNI) space, using affine transformation for approximate re-
gistration, and nonlinear transformation for fine registration to obtain
the transformation parameters [30].

2.3. Feature reduction

There are two different feature reduction phases in the proposed
scheme. Here, we briefly describe these phases. Given that some fea-
tures are uninformative, irrelevant or redundant for classification, re-
ducing the number of features not only speed up computation but also
improve classification performance. Therefore, an initial feature selec-
tion step was adopted. The feature ranking approach [31,32], has been
widely used in feature selection. F-score is a simple, generally quite
effective technique which measures the discrimination of two sets of
real numbers and used in previous studies [33,34]. In this study, the F-
score method is employed for feature ranking.
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Given training vectors, xk, k = 1, ..., m, if the number of positive
instances (i.e., HC) and negative instances (i.e., AD) are n;, and n_,
respectively, then the F-score of the ith feature is defined as:

& - xi)2 + (% — %)

1 n+ = 1 n— — —(—
. o — xR+ Ly D —xO»

Fi) =

@

where xi, (V%™ are the average of the ith feature of the whole, po-
sitive, and negative datasets, respectively; xi, L) is the ith feature of
the kth positive instance, and xy, L) is the ith feature of the kth ne-
gative instance. The numerator indicates the discrimination between
the positive and negative sets, and the denominator indicates the one
within each of the two sets. The larger the F-score is, the more likely
this feature is more discriminative. Therefore, we use this score as a
feature selection criterion.

2.4. PCA

The second feature reduction is achieved using PCA [35]. Let Tvar
be the total variance of the original feature set, and Svar be the total
variance of the reduced feature set having dimension d, d < < M2

Svar

The proper value of d is selected: I - ~ 0.9. Let PERred be the achieved
feature reduction percentage.

N?2-d

N? X 100% @
For a 256-by-256 size T2-weighted MR image, its dimension is
256 % 256 = 65,535; after a three-level DWT decomposition, the di-
mension of the wavelet coefficients is 32 x 32 = 1024. Therefore, it is
still a high computation cost if we directly submit the 1024 dimensional
data to classifier. In this paper, we used PCA to reduce the 1024 di-
mensional data to only 7 principal components. The primary function of
PCA is to reduce a larger set of variables into a smaller set of’ artificial
variables (called principal components) that account for most of the
variance in the original variables [36]. Variables are supposed to be
continuous and have linear relationships [36], and PCA reduces di-
mensionality based on the relationships among variables. The major
strength of PCA is that it is based on whole brain voxel data. Several

machine learning studies have used PCA to reduce dimensionality.

.. PERred =

3. Methodology

This section is the backbone of the present work in in the form of
Proposed Methodology with evaluating parameters. The novelty of the
present work is at the heart of this section.

3.1. Proposed methodology

An innovative automated tissue segmentation and classification
scheme established on F-score backed with Principal Component
Analysis (PCA), fast Discrete Wavelet Transform (DWT)/Band
Expansion Process (BEP), and least squares based Kernel Support Vector
Machine (LSK-SVM) classifier is at the heart of this paper. Using input
as T1, T2 and Proton Density (PD) scans of patients, CSF (Cerebrospinal
Fluid), WM (White matter) and GM (Gray matter) are afforded as
output, which act as the hallmark for brain atrophy, thus sustaining in
diagnosis of Alzheimer's disease (AD) from Mild Cognitive Impairment
(MCI) and Healthy Controls (HC). Blending BEP features from DWT
with texture features from Gray Level Co-occurrence Matrix (GLCM)
promises to be a Messiah in revealing the atrophy of segmented tissues.
T1-weighted s-MRI scans of 158 patients with the AD and 145 HC are
engaged from the ADNI database. Preprocessing steps unearthed five
parameters (i.e. cortical thickness, curvature, gray matter volume,
surface area, and sulcal depth) in the preliminary step. The Fast
DWT + F-Score + PCA + KLS-SVM + Poly Kernel is giving 100%
tissue classification accuracy for test samples under consideration. MRI
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raw images are made input initially followed by DWT and FreeSurfer
operations in order to extract the valuable features using Gray Level Co-
occurrence Matrix (GLCM) and texture and volumetric features.
Corresponding acquired features from the above two steps are in-
tegrated and in the succeeding steps, feature reduction using F-score
backed by PCA is applied in order to extract the most relevant and
meaningful features for optimal classification in the following steps.
The feature vector is constructed from the optimal relevant features
obtained in the previous step and used as a tool for training KLS-SVM in
order to make a differentiation between AC and HC patients. The
evaluation of the trained classifier is performed using new test instances
of MRI scans and noting down the corresponding classification ac-
curacies.

3.2. Evaluating parameters

The recall is the probability that a diagnostic test is positive, given
that the person has the disease.

>, Truepositive TP

Recall or True Positive Rate (TPR) = Sensitivity = 5 Condi ” = TP EN
‘onditionpositive

3)
Specificity is the probability that a diagnostic test is negative, given
that the person does not have the disease.

Y Truenegative 1IN
Y, Conditionnegative ~ TN + FP

True Negative Rate (TNR) [36] = Specificity =

4

Accuracy is the probability that a diagnostic test is correctly per-
formed.
TP + TN
TP + TN + FP + FN

Accuracy [36] = )

Also, ML models used in this study are assessed with the Receiver
Operating Characteristics (ROC) [37,38]. The area under the curve
(AUC) has a public use for performance evaluation of clinical diagnostic
and predictive models [39] while creating a tradeoff between the sen-
sitivity (true positive rate) and the specificity (true negative rate).
Percentage of positive instances truthfully categorized as positive is
known as sensitivity and specificity calculates the percentage of nega-
tive instances which were truthfully labeled as negative. ROC curve
designs the sensitivity against 1-specificity (false positive rate) while
evaluating a classifier [39]. That curve illustrates the development of
the classification threshold from the very positive threshold where
every instance is labeled as positive to the very negative threshold
where every instance is labeled as negative. The confidence score of the
classifier is beneath the set threshold in the setting when the sensitivity
of a classifier is 0.0 and the specificity being 1.0. Contrariwise, the
confidence score of the classifier is overhead the set threshold provided
specificity is 0.0 and sensitivity is 1.0. Diagonal line relating origin (O,
0) to the final point (1, 1) possessing AUC of 0.5, are characteristics of a
random classifier. Similarly, a perfect classifier possesses AUC of 1.0
with a starting of ROC curve from (0, 0) to (1, 0) [39], and has the
signature in ranking all positive instances above all negative instances.
AUC fundamentally is like Wilcoxon-Mann-Whitney statistic [40],
which has an appearance that a classifier ranking of randomly selected
positive cases is higher than randomly selected negative cases. While
diverse tradeoff arises from diverse clinical diagnostic scenarios, an
AUC that is greater than 0.75 is usually recommended for clinical
purposes [41]. The AUC is defined as follows:

_[1if c(p) > c(n)
clp.m) = {0 otherwise
1
AUC(¢,P,N) = —— s
@B = 15N EEN «®.m ©

where c(e) being the classifier's confidence score, P is a set of positive
examples, and N is a set of negative (HEG) examples. Applicability of
ML in clinical practice is not governed by the significance of accuracy
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indices being above chance level. Training and testing of our pattern
recognition algorithms were on groups enjoying the relatively modest
size and therefore, achieved accuracies from those samples are not
unswervingly archetypal for predictions in the clinical world [42,43].
Performance indices with reasonable accuracy gained in the present
study are reliable with the notion that there are important limitations in
the application of ML techniques for predicting diagnosis in clinical
neuroimaging research.

4. Discussion and experimental results

The final results in the form of tables, graphs, ROC/AUC curves are
drawn here in the present section. Also, the clinical importance of the
obtained results is thoroughly discussed in addition to a comparison of
existing techniques with that of ours in terms of their improvements.

4.1. Experimental setup

Using PC with Intel Core i5-4590 processor, 3.30 GHz, 8 GB of RAM
and 64 Bit Operating System and in MATLAB environment, the offered
technique and experiments are probed on two different MR image da-
tasets. Partaking in-plane resolution of 256 * 256, both datasets consist
of T1-weighted MR brain images, which were downloaded from the
ADNI website (adni.loni.usc.edu). The first dataset being benchmark
dataset, extensively castoff in brain MR image classification problem,
and consist of abnormal images of AD diseases besides normal images of
HC. The benchmark dataset entails of high-resolution T1-weighted s-
MRI of 303 participants with 158 AD and 145 HC. Several prevailing
schemes are instigated for equating the performance of our proposed
method with contemporary techniques. Several different experiments
are conceded for assessing the performance of the proposed system in
light of feature reduction, efficiency, classification accuracy, compar-
isons with other state of the art schemes and computation complexity
analysis.

4.2. Results and discussions

The 10-fold cross-validation strategy is performed for all algorithms,
and this process is repeated 5 times independently so as to avoid the
sampling bias introduced by randomly partitioning dataset in the cross-
validation. The backbone for the proposed system is the power of Fast
DWT + F-Score + PCA + KLS-SVM + Poly kernel for tissue segmenta-
tion and classification. Conserving 90% of the total variance of the
disintegrated features, PCA yields feature vector of size 7 only, which
being the first 7 principal components and outputs feature set of 0.88%
and 0.014% of the initial feature set. Therefore, due to the Fast
DWT + F-Score + PCA + KLS-SVM + Poly kernel combination, we
have achieved a 99% feature reduction (See Table 2).

Triumphing of 47.39% feature reduction from the state of the art
brain MR image classification techniques is not the only contribution of
this work but also higher performance in terms of accuracy lies at its
core. To discover the suitable number of principal components which
contributed for best results, the performance of the proposed system
experimented with different numbers of principal components. It is
clear from the results given in Fig. 1, that our proposed system com-
petently achieved paramount results in terms of sensitivity (1.00, 1.00),
specificity (1.00, 1.00) and classification accuracy (100%, 100%), using
only 7 principal components for image representation. The classifica-
tion accuracy of the proposed system can also be evaluated through
receiver operating characteristic (ROC) curves, shown in Fig. 1 below.

With an average area under the curve (AUC) of 100% and 0%
standard deviation, the specified proposal correctly classified the MRI
images of both datasets. To challenge the strength and offers of our
proposed model, we paralleled its performance with 11 state of the art
brain MR image classification schemes. The comparison results plus
feature vector dimension for each of the schemes are shown in Table 3
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Table 2
Automated AD classification using KLS-SVM classifier.
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Test images from different models

Average classification with KLS-SVM

Linear SVM Polynomial
Texture/GLCM 77.13 80.27 100.00
DWT/BEP 85.31 89.17 100.00
Fast DWT + F-Score + PCA + KLS-SVM + Poly 100.00 100.00 100.00
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Fig. 1. Performance evaluation using ROC curves.
Table 3

Performance comparison using two different dataset groups.

Approach Feature Accuracy (%)
dimension

Image Image

Group Group

1 2
DWT + SVM + POLY [44] 4761 98.00 97.15
DWT + SVM + RBF [44] 4761 98.00 97.33
DWT + PCA + FNN + ACPSO [45] 19 100.00 98.75
DWT + PCA + BPNN + SCG [46] 19 100.00 98.29
DWT + PCA + FNN + SCABC [47] 19 100.00 98.93
DWT + PCA + KSVM + IPOLY [48] 19 100.00 98.12
DWT + PCA + k-NN [49] 7 98.00 97.54
RT + PCA + LS-SVM + RBF [50] 9 99.39 96.47
Fast DWT + PCA + LS-SVM + RBF [51] 8 99.56 96.78
PLS + PCA [52] 10 84.59 85.7
Curve let + PCA + KNN [53] 10 89.47 87.10
LUPI-DL [54] 93 91.45 88.70
MM-SDPN-SVM [55] 93 97.13 96.93
Fast DWT + F-Score + PCA + LS-SVM + POLY 7 100.00  100.00

(Proposed)

below. Worst accuracy performance results are described in [44] with
the highest feature dimension (4761 features/image) also, thus results
in high computational complexity. The techniques described in [46-48]
show amended results in brain MR image classification, with lower
feature vector dimension (19), but these schemes use various complex
weight optimization techniques, which themselves require high com-
putational complexity. Feature vector dimension (7), used in [49], is
equal to our proposed method (7), but it is obvious from the results of
Table 3, that the method described in [49] is less effectual and general
than the proposed scheme, in terms of classification accuracy whereas,
our proposed system only requires a feature vector of dimension 7, with
the highest retrieval accuracies. Table 3 below shows a comparison of

other techniques with our proposal [50-53]

The results of the proposed method when compared with the much-
hyped deep learning methods for AD diagnosis from neuroimaging data,
again showed marginal results [54,55]. Yan Li et al. [54] proposed a
deep learning LUPI-based CAD framework for AD/MCI diagnosis using
an approach of Transfer Learning (Learning using privileged information
(LUPD)). The LUPI classifiers are used at the classifier level and deep
learning at the feature level. Using a single model PET data and MRI as PI
(privileged information), the authors got marginal performances from
their proposed work. The deep learning algorithms MDL-CW, MRBM,
and DCCA algorithms outperform the classical SVM classifier. DCCA
achieves the overall best performance with the best classification accu-
racy, sensitivity, YI, NPV, and F1 score of 91.45 + 5.42%,
90.60 + 10.71%, 82.73 = 11.02%, 92.34 = 8.52%, and 91.19
+ 5.68%, respectively, and the second-best specificity and PPV of
92.13 + 11.30% and 93.44 = 9.14%, respectively [54].

Similarly, J. Shi et al. [55] proposed a multimodal stacked deep
polynomial network (MM-SDPN), which consists of two-stage SDPNs, to
fuse and learn feature representation from multimodal neuroimaging
data for AD diagnosis. Experimental results indicate that MM-SDPN is
superior over the state-of-the-art multimodal feature learning-based
algorithms for AD diagnosis, like Multiple kernel learning (MKL), Multi-
tasking learning (MTL), Deep belief networks (DBN), Multimodal re-
stricted Boltzmann machines (M-RBM), Stacked auto encoders (SAE),
Nonlinear graph fusion (NGF). In AD vs. NC case, the proposed MM-
SDPN algorithm achieves the best performance with a mean classifi-
cation accuracy of 97.13 = 4.44%, sensitivity of 95.93 = 7.84% and
specificity of 98.53 + 5.05%, in comparison with single modal deep
learning algorithms like DPN-3-MRI, DPN-6-MRI, SDPN-PET, etc. Both
of the works extracted a feature vector of 93 features whereas, our
method relies only on 7 extracted features and outperforms the said
methods [54,55]. Also, the deep learning complex network increases
the computational complexity which makes our proposed method re-
latively faster (Table 3).

The atrophy change in various brain sub-structures revealed from
our method is in close agreement with the findings in previous studies.
The results disclosed smaller volumes of ptIFC (related with inhibitory
control processes) in AD patients than in HC controls in both hemi-
spheres and the left triangular shows diminution conferring to the
group level (HC > MCI > AD). Postcentral gyrus with abridged white
matter (WM) and volume below the right postcentral gyrus are other
zones of enormous focus in AD patients [56,57]. Bilateral insula, right
superior temporal gyrus, bilateral anterior cingulate cortex, and left
superior medial frontal cortex are usually abridged gray matter pro-
vinces obtained in AD results [58,59]. Cortical thickness measured by
voxel-based morphometry (VBM) embodies the shortest distance be-
tween the boundary of gray/white matter and the pial surface, whereas
gray matter volume denotes the amalgamation of two genetically in-
dependent anatomical properties [60,61]. The cortical thickness of the
bilateral entorhinal, bilateral paracentral, left medial orbitofrontal, left
superior parietal, right cuneus, right postcentral was thinner in AD
compared with HC. In the surface area, AD has smaller areas than HC in
the left inferior temporal, left precuneus, right entorhinal, right bank-
sters, right inferior parietal and have greater areas than HC in the left
precentral, left superior parietal, right insula. Compared with HC, the
gray matter volume of the bilateral entorhinal, bilateral precentral, left
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Table 4
Radiologist's feedback for the second local dataset.
Methods Acceptable Improvement needed Unacceptable
CSF GM WM CSF GM WM CSF GM WM
Alzheimer image setl
Texture features v v v
DWT v v
Texture + DWT v v v
Alzheimer image set2
Texture features v v v
DWT v v v
Texture + DWT v v v
Alzheimer image set3
Texture features v v v v
DWT v v v
Texture + DWT v v v

superior frontal, left caudal middle frontal, right posterior cingulate and
right rostral middle frontal was smaller in the AD.

In the curvature, HC has smaller curvatures than an AD in the bi-
lateral parahippocampal, bilateral superior temporal, left insula, left
entorhinal, right supramarginal and right temporal pole. Moreover, AD
has greater depths than HC in the bilateral posterior cingulate, left in-
sula, left rostral anterior cingulate, left posterior cingulate, right su-
perior temporal, right parahippocampal and have smaller curvatures
than HC in the left paracentral, right banksters in the sulcal depth
[62,63]. Severe shrinking in cortical thickness, surface area and gray
matter volume of the entorhinal cortex and atrophy predominantly
appears in the temporal lobe, frontal lobe, occipital lobe, parietal lobe
and cingulate gyrus in the AD, which almost reach for agreement with
pre-existing literature involved in entorhinal cortex's atrophy [64,65].
Interim, the surface areas of left precentral, left superior parietal and
right insula show a small intensification in the AD. Evolving indication
shows altered neurogenesis in the adult hippocampus epitomizes an
early critical event in the course of AD [66,67].

The results obtained in case of local dataset indicate the efficacy of
the segmentation method with an accuracy of 92.18 =+ 5.32, using our
proposed method in comparison to an accuracy of 81.76 + 9.20 for
AD/HC. Based on the overlap index, the proposed segmentation method
shows a value of 93.19 *= 3.62 compared to an overlap value of
78.66 = 7.3 for AD/HC. The segmented ROI is then used for the pre-
cise estimation of the AD volume from brain MRI images. Also, the
radiologist's feedback has encouraged the worthiness of our proposed
method. (See Table 4).

5. Conclusion

Diagnosing human brain disorders from MR images manually is not
only the toughest task because of its highly complex dimensionality but
is also very prone to human errors, making it almost a hard problem.
This creates a thirsting obligation for emerging diagnostic tools, pos-
sessing the capability of automatically and accurately classifying brain
MR images as normal or abnormal. We put forward our effort toward
the same need by proposing a novel method of combining the strengths
of Fast DWT + F-Score + PCA + Poly Kernel, and a computationally
less expensive KLS-SVM to physique a fully automatic and accurate
brain MR image classification system. With this combination, we not
only achieve higher feature reduction but also acquire superior per-
formance than the state of the art schemes. Extensive experiments and
comparisons show the effectiveness of the proposed system. Using su-
pervised and unsupervised classification schemes for brain MR image
classification, the future is promising for investigating the effectiveness
of other transforms along the same dimension.
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